
ON ONE BOUNDARY-VALUE PROBLEM
FOR THE LAPLACE EQUATION

I. M. Martynenko UDC 531.2

We have derived a Fredholm-type equation of the second kind for a directional derivative problem arising in
the stationary theory of heat conduction. One result of Ya. B. Lopatinskii has been refined.

Consider the problem of finding a function u(x) harmonic in the domain D ½ E3 by the following boundary
condition:

α grad u + au = f . (1)

Let us assume that the functions α, a, and f are continuously differentiable for the required number of times. For ex-
ample, we assume that α is a function twice continuously differentiable on S, and a and f are functions continuously
differentiable on S. Here D is a convex domain, S is a twice continuously differentiable set, and (α, ν) = 1 (ν is the
inner unit normal to S). The boundary condition (1) implies

  lim
τ→ 0

  



(α (y), grad u (x))x=y+τν(y)




 + a (y) u (y) = f (y) . (2)

Following [1], let us deduce the Green formulas for a directional derivative problem. To this end, let us make
use of the identity

ν = α + (α⋅ν)⋅ν . (3)

The validity of formula (3) follows from the transforms

ν = α − ν⋅(α⋅ν) = α − (α (ν, ν) − ν (α, ν)) .

The latter equality is satisfied identically, since ν2 = 1, (α, ν) = 1. Since

∂u

∂ν
 = (ν, grad u) = (α − ν⋅(α⋅ν), grad u) = (α, grad u) + (ν, grad u⋅(α, ν)) , (4)

we write

 ∫
S
∫ 



u
∗
 
∂u

∂ν
 − u 

∂u
∗

∂ν




 dS = ∫

S
∫ u

∗
 (α, grad u) − u (α∗

, grad u
∗) + (ν,[grad (uu

∗)⋅(α⋅ν)]) dS . (5)

Let us introduce the following notation:

α∗
 = 2ν − α ,   a

∗
 = a + (ν, rot (α⋅ν)) . (6)

Using the formula
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rot (uu
∗
 [α⋅ν]) = uu

∗
 rot (α⋅ν) + (grad (uu

∗)⋅[α⋅ν]) ,

we obtain

 ∫
S

∫ (ν (grad (uu
∗)⋅[α⋅ν])) dS = ∫

S

∫ ((ν, rot (uu
∗
 [α⋅ν])) − (ν, u

∗
 rot (α⋅ν))) dS =

= − ∫
S

∫ (ν, uu
∗
 rot (α⋅ν)) dS + ∫∫∫ 

D

grad rot (uu
∗
 [α⋅ν]) dν = − ∫

S

∫ (ν, uu
∗
 rot (α⋅ν)) dS . (7)

From formulas (5)–(7) we have

 ∫
S

∫ 



u
∗
 
∂u

∂ν
 − u 

∂u
∗

∂ν




 dS = ∫

S

∫ u
∗
 ((α, grad u) + au) − u ((α∗

, grad u
∗) + a

∗
u
∗) dS . (8)

By virtue of the second Green formula from (8) it follows that [3]

 ∫
S

∫ u
∗
 ((α, grad u) + au) − u ((α∗

, grad u
∗) + a

∗
u
∗) dS + ∫∫∫ 

D


u

∗∆u − u∆u
∗
 dV = 0 . (9)

Likewise, we obtain

 ∫
S

∫ 

u ((α, grad u) + au) − 

1
2

 (a + a
∗) u2



 dS + ∫∫∫ 

D


u∆u − (grad u)2 dV = 0 . (10)

From formula (10) it follows that if a < 0, a∗ < 0, and the directional derivative problem (1) for the Laplace equation
has a solution, then this solution is unique [1]. Indeed, assuming the existence of two solutions u1 and u2, we obtain
for their difference u = u1 − u2 from (10) the equality

− ∫
S

∫ 12 (a + a
∗) u2

dS + ∫∫∫ 
D

(grad u)2dV = 0 ,

whence u ≡ 0 in the domain D follows.
We shall seek the harmonic function in the form [1]

u (x) = ∫
S

∫ g (x, y) µ (y) dyS , (11)

where µ(y) is a function continuous on S, and the function g(x, y), which is harmonic at x ≠ y, is defined by the for-
mula [1]

g (x, y) = − 
1
π

 




x − y 

α (y)
α (y)

 + x − y, ν (y)







x − y 

α (y)
α (y)

 + x − y




2
 . (12)

Here x and y are points of a three-dimensional Euclidean space (they are identified with the corresponding radius vec-
tors), and x − y is the distance between them. We represent formula (12) as
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g (x, y) = − 
1

2π x − y
 

(α (y), ν (y))
α (y)

 + (w (x, y), ν (y))

1 + 




α (y), w (x − y)
α (y)





 , (13)

where

w (x − y) = 
x − y

x − y
 . (14)

From (13) it follows that the thus defined function g(x, y) has at x = y a polar singularity. Therefore, the integral in
formula (11) should be considered as improper.

Direct calculations show that

− 2π 
∂g

∂xk

 = − 
xk − yk

x − y
3 

(α (y), ν (y))
α (y)

 + (w (x, y), ν (y))

1 + 




α (y), w (x − y)
α (y)





 +

+ 

νk − 
xk − yk

x − y
 (w, ν)

x − y
2
 



1 + 





α (y), w (x − y)
α (y)









 2
 − 





αk (y)
α (y)

 − 
xk − yk

x − y
 



w, 

α (y)
α (y)









x − y
2
 



1 + 





α (y), w (x − y)
α (y)









 2
 ,

therefore,

2π (α, grad g) = − 
(α, w)

x − y
2 

(α (y), ν (y))
α (y)

 + (w (x, y), ν (y))

1 + 




α (y), w (x − y)
α (y)





 +

+ 
(α, ν) − (α, w) (w, ν)

x − y
2
 



1 + 





α (y), w (x − y)
α (y)









 − 





(α (y), ν (y))
α (y)

 + (w, ν)



 



α − 

(w, α)
α





x − y
2
 



1 + 





α (y), w (x − y)
α (y)









 2  .

Apparent simplifications lead to the formula

(α, grad g) = − 
1

2π
 
α (w, ν)

x − y
2  = − 

(x − y, ν (y))⋅α

x − y
3  . (15)

Let z 8 S and x 8 D. Then the integral in (11) admits differentiation under the integral sign and manipulations
yield

(α (z), grad u (x)) + a (z) u (x) = 

= ∫
S

∫ 

((α (z) − α (y)), grad g (x, y)) + a (z) g (x, y) + 

1

2π
 
(x − y, ν (y)) α

x − y3



 µ (y) dyS . (16)
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If the function µ(y) is continuous on S, then the integral in (16) converges for all z. For function (11) to satisfy the
boundary condition (1), one has to require that the function µ(y) be a solution of some integral equation. From the
definition of g(x, y) and formulas (13) and (15) it follows that the chief singularity of the subintegral expression in
(16) is contained in the last term. Therefore, let us consider the integral

I = ∫
S

∫ (x − y, ν (y))⋅α

x − y
3  µ (y) dyS .

(17)

Let us single out on S a point z0 and denote by S0 a small vicinity of this point, whose projection on the tangent
plane forms a circle of radius ε. For this projection, let us assume that the origin of the coordinate system is at the
point z0, the y1- and y2-axes lie in the tangent plane, the y3-axis is normal to S, and the equation for S0 is repre-
sentable in the form y3 = ω(y1, y2), where ω is a twice continuously differentiable function, with



ω (y1, y2)

 ≤ A y1
2
 + y2

2
 ,   





∂
∂yi

 ω



 ≤ A √y1

2 + y2
2  ,   i = 1, 2 ,

here A is some constant. Let us transform integral (17) to the form

I = ∫
S0

∫ (x − y, ν (y))⋅α

x − y
3

 µ (y) dyS +    ∫
S ⁄ S0

∫ (x − y, ν (y))⋅α

x − y
3

 µ (y) dyS =

= ∫
T0

∫ (x − y, ν (y))⋅α

x − y
3

 (µ (y) − µ (z0)) √1 + 




∂ω

∂y1





 2

 + 




∂ω
∂y2





 2

 dy1dy2 +

+ ∫
T0

∫ (x − y, ν (y))⋅α

x − y
3

 µ (z0) √1 + 




∂ω

∂y1





 2

 + 




∂ω

∂y2





 2

 dy1dy2 +    ∫
S ⁄ S0

∫ (x − y, ν (y))⋅α

x − y
3

 µ (y) dyS . (18)

From (18) it is seen that the principal part I is represented by the second integral on the right side. To investigate its
behavior at x → z0 2 S0, assume that in the above local coordinate system x has coordinates (0, 0, x3), y — (ρ cos ϕ,
ρ sin ϕ, 0), ν(y) lies on the z-axis and has coordinates (0, 0, 1). Therefore, for the principal part I we write

I = µ (z0)  ∫ 
0

2π

 ∫ 
0

ε

 
α (z0) x3


ρ

2
 + x3

2


3 ⁄ 2
 ρdρdϕ + I0 (x, y) , (19)

where I0(x, y) is the regular part of I. The integral appearing in (19) is calculated explicitly, and for I the repre-
sentation

I = − 2π α (z0) µ (z0) x3 


1

√ε2 + x3
2

 − 
1

x3



 + I0 (x, y)

(20)

is valid. When x3 → 0 in (20), we get

  lim
x3→ 0

  I = 2π α (z0) µ (z0) + I0 . (21)

Thus, introducing (11) into the boundary condition (1) and passing to the limit first at x3 → 0 and then at ε → 0, we
arrive at the following integral equation for determining µ(x):
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α (y) µ (x) + ∫
S

∫ 

((α (z) − α (y)), grad g (x, y)) + a (x) g (x, y) +

+ 
1

2π
 
(x − y, ν (y))

x − y
3  α (y)




 µ (y) dyS = f (x) . (22)

If S is a Lyapunov surface, then the subintegral expression in (22) has an integrable singularity and, therefore, (22) is
a Fredholm equation of the second kind. In the general case, it is solvable by the third Fredholm theorem.

Note. The principal results obtained here are also valid for weaker assumptions about the initial conditions of
the problem. For example, the surface S can be a Lyapunov surface, and the sought functions u and u∗ can be con-
tinuously differentiable in D

__
 = D k S and twice continuously differentiable in D.

NOTATION

a, heat-transfer coefficient; u, temperature; α, heat conductivity coefficient.
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